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I. INTRODUCTION

This report is concerned with techniques of estimating the
parameter values of mathematical models. 1t begins with a brief
discussion of mathematical models and how they relate to the physical
situations they attempt to describe. Next, the method of least squares
as it applies to both linear and nonlinear models is investigated.
Special emphasis is given to nonlinear models with the linearization
method. Finally, the report is concluded with an example from
climatology.




2. MATHEMATICAL MODELS

A problem that arises in many fields is that of determining
what relationships exist between variables. Suppose, for example >
that an experiment has produced a sample of data consisting of a number
of simultaneous observations of a group of variables. It would be
convenient to put the data in the form of an array as shown below.

X X

I *nn 12 " X1k

Yo X1 *p2 v X

Yi o *11 *p2 Xik

yn xnl xn2 Xnk

Each row represents one simultaneous observation of all the variables,
and each column represents all the observed values of a particular
variable. One variable (which one depending on the nature of the
experiment) 1is designated the response or dependent variable (denoted
by y), and the others are called independent variables (denoted by

xl, Xogs voes xk). From the sample of data, a researcher would like to

make inferences about possible relationships existing between the
independent and dependent variables. Mathematical models are commonly
used to describe and measure the strength of these relationships. They
also provide a means of predicting the value of the dependent variable
for any given setting of the independent variables.

The relationship between the dependent and independent variables
is rarely a functional one, where the behavior of the dependent variable
can be predicted exactly from the independent variables. Experiments
are of course vulnerable to error, and the results may include effects
from outside sources. Consequently, the mathematical models under
consideration must allow for noise in the data. Models of this kind
are called probabilistic models and have the form

y = £(x,8) + r,




TR T T T

where x = (xl,xz,...,xk) is a vector of independent variables,
9 - (91,92,...,9p) is a vector of parameters, and r is the residual

or difference between Lhe observed value y and the predicted value
f(x,0) of the dependent variable.

The residual r is made up of two components. The pure experimental
error (¢) and the error due to lack of fit (e). The pure experimental
error may be due to inaccuracies in the instruments, human mistakes, etc..
It is an inherent part of the data at this point and beyond our control.
Some assumptions are usually made about ¢: that it is random in nature
and has expectation zero. 1If this is so, then the data has no systematic
source of error that would tend to skew the results in one direction or
another. The error due to lack of fit is the error in the model, and it
too may arise from a number of sources. Perhaps not all the significant
Variables are accounted for, or perhaps the relationship expressed by
the model is not an appropriate one to use.

With these considerations, the model may be rewritten
y = f(x,8) + e+ ¢ where r=-e+e,

The function f and the computed values of the parameters are ideally those
that minimize e and average out €.

Once a particular function f is chosen for the model, the next
problem is to compute the parameter values. The parameter values are
those that best describe the particular sample of data available, and
are used as estimates of the parameter values that best fit the larger
population. The methods of computing the parameter values depend on
the for of f; specifically, whether f is linear or nonlinear with
respect to its parameters. Linear models have the form

y=806_.+ lel + 92x2 + ... + kak +r,

0

and models not of this form, with respect to the parameters, are nonlinear.
Some examples of linear and nonlinear models are shown below.

Some Linear Models

It

y 90 + le + 92x2 + 93x3 + r (cubic polynomial, one independent variable)

y 90 sin X + szz + 93x2

sin x + r (two independent variables).

Some Nonlinear Models

o
1 - exp{—le 2} + r (used in modeling visibility, see reference [5] )

y

1 - (1~ xgl)92 + r (used in modeling skycover, see reference [6] ).

y




3. METHOD OF LEAST SQUARES IN THE LINEAR CASE

Suppose that the set of data .

X

"1 11 12 ° Mk )
2 21 22 %ok
Yy Yin. o ¥y o *ik ‘
i
|
Ya Ynl *a2 *nk
is given and a linear model, Y = 90 + Glxl + 92x2 + ... + Qkxk +r, is
chosen to express a relationship between the dependent variable y and
the independent variables Xys XgreeesXyo

Regardless of what values may be arbitrarily assigned to the
parameters 00, 91,...,9k, for each observation in the data set, there

exists an r; so that

yy = 90 + 91“11 + 92x12 + ... + Qkxik + ri
This equation is called an observation equation. Solving for r, gives
Ty =Y 7 8 7 Oyxyy m 0%t = 8y
Intuitively, one would like to find the values for 90, 91,...,9k that

minimize !ril for each observation in the data set. The method of least

squares finds those parameter values that minimize instead the sum of the
squared residuals over all the observations. That is, those parameter
values that minimize

2 n 2
r = L (y, ~0,-06,x,, -08,x,. - ... -8x..)
{=1 1 {=1 i 0 1711 2712 k7ik

™o

RSS =

are found.




0,91,...,9k;

Yo xil’ x12’ covs Xy all being known values (the data). To minimize

Observe that RSS is a function of the parameters 0

RSS, its partial derivative with respect to each @; is taken and set
equal to zero. The resulting system of k + 1 linear equations in k + 1
unknowns (often called the normal equations) has as its solution

the vector of parameter values that minimize RSS.

The partial derivatives are shown below:

n
9RSS = - 2 .Z (yi - 90 - glxil - 92)(],-2 - e, - ekxik)
30 i=1
0
n
RSS _ ., L _ _ _
TR (y; = 8p = O1%y1 = O5%jp = v = B X%y
1 i=1
n
ARSS _
29, ~ T2 by T8y - Byxyy = @pxpp - e ORIy
j i=1
n
SRSS = -2 B (yy 7 0 = 8%y T 8% T T ¥k
SQP i=1

Setting them equal to zero and simplifying them algebraically yields
the system of normal equations:

8yn + 91 )xil + 92 inZ"'gk Xlk = ;yi
2 A P
90 L xil + 91 L Xy + 92 L xiZXil R Ok : xikxil % Yi¥i1

+ 8 + 8 I x

2 z x12x1j + ... K ikxij = I yixij

90 X xik + 91 by xilxik

+ 92 z XiZXik + ...+ Qk I x




The equations may be further simplified by using MATRIX notation.
Let Y be the column vector of values of the dependent variable:

1
(v,

Yo :

Y = vl and let X be the matrix of values of the independent

: y

nj
variables, appended on theleft with a column vector of 1's:

1 K11 ¥y cor xlkw

1 Xy1 *ap -0 %y

X=1:: . . . Lastly, define § to be the column vector
1Xgy g e Xy
1

an xnz “oe Xnk-‘

of parameters in the model and r to be the column vector of residuals:

- - P
91 r,
9 T2
8 = Qj r=|(r.{ - Then the system of n observation
e, | r
_kj L ]
} equations
E
¥y = 90 + lell + 92x12 + + gkxlk +r

]

% §




may be written simply as

Y =X8+¢
Furthermore, the n riai equations may be rewritten in terms of matrix
multiplication:
r b
~ . ; 1 T 1- [ - :
[n )le X9 N “xik f r 90 ] Iy, y
» rx, . ? : ' P
R X1 )x. X lxilxik ; | 91 ( Xyixil
12, 11 i
5 S Z > y
!”xiZ X% inz NN kxizxik ‘ | 02 VX,
. I , .
| L
1 . . . ; i
. i X, %X, . ves X, X, i ; 3
-inj xilxij XiZX1J xi]xlk ! Qj )yixij
|
? |
| .
E £ ix, 2 )
T M Motk ik “ | Bi*ix |

Noting that the matrix on the left is X 7X and the matrix on the right
is 5 ’!, the entire system of normal equations may be expressed by the
single matrix equation

(7 X9 = KT ¥
Finally, solving for 6 gives

8- T ety

This is a very powerful result, since it holds for any linear model
and corresponding set of n > k + 1 observations (where n is the number of
observations and k + 1 is the number of parameters; that is, there should
be at least as many observations in the data set as parameters in the
model). The first step would be to construct the matrices X and Y from
the data. Then the parameter values that minimize RSS are those that
satisfy the linear system

CCTX) 8 =(xTY)

Most computer installations have routines for solving systems of linear
equations. As a warning, however, this particular system is often ill-
conditioned, so round-off error is an important factor in the computations.




METHOD OF LEAST SQUARES IN THE NONLINEAR CASE

Suppose that the sample of data

Y1 *11 *12 0 0 ik
Yo *p1 %22 v 0t %ok
Yi *1 *i2 0t %k
Yn *n1 *a2 © 0 0 *nk

is given and a nonlinear model, y = f(x,8) + r, is chosen to express
a relationship between the dependent variable y and the independeat
variables xl, Koy wres Xpo

Proceeding in much the same way as for the linear model, regardless
of what values may be arbitrarily assigned to the parameters, for each
observation in the data set there exists an r, so that

y, = f(x, 8 +r,

Solving for r, gives

i

r, =y - E(x,0).

The method of least squares minimizes the quantity

=]

n
S
i=1 i

RSS = (yi - f(xi,e))2

n o~

1

with respect to its parameters by setting the partial derivatives equal
to zero and solving theresulting system of equations. The partial
derivatives are of the form shown below:

JdRSS
38,
J

n
= =2 % (y, - £(x;,0)) 2 (x,,8) for j = 1, ...,p.

1=1 203




Therefore, the system of normal equations is

(y; - £(x,,9)) af(ii,g) =0 for =1, ...,p

BGj

i=1

This approach may be fine for some nonlinear models, but for others
difficulties arise. The model may be so complex that the partial derivatives
are difficult to obtain. Furthermore, since the model is nonlinear the
partial derivatives and normal equations are also nonlinear. Systems of
nonlinear equations can be difficult to solve, and iterative techniques
are almost always required. Also, more than one solution to the system
may exlst, corresponding to the critical values of RSS. 1In this case,
each solution must be tested to determine which produces the minimum
value of RSS. For these reasons, other methods have been devised for
estimating the parameter values of a nonlinear model.




5. THE LINEARLIZATION METHOD

The linearization method of nonlinear regression has three distinguishing
features. First, it is an iterative procedure. Given an initial estimate
of the parameter values, a "better" estimate is computed with each successive
iteration. rhe parameter values are refined in this manner an unknown number
of times until finally some stopping criterion is met. Second, it is not
self-starting. This means that the method does not provide a way of obtaining
that initial estimate of the parameter values. The researcher must use
whatever information is at hand to make the first guess. Lastly, linear
approximations of the nonlinear model are used to compute the parameter
values, so the techniques already developed for linear models are applicable.

Let T = (tl,tz,...,tp) be the current best estimate of @ = (91,92,---,9p)-

To '"linearize" the nonlinear model
y = f(zs_g_) +r,

a first order Taylor series expansion of f about T is made. The expansion
is a linear polynomial in (Qj - tj) of the form

P
P, =t +3 AEED g
j=1 j ]
For @ close tc I, P (x,8) = f(x,8). Therefore, substituting P for f gives
a linear approximation of the nonlinear model.

y = P(x,9) + r

p
y = f(x,T) + I ﬂ’:‘;_ll_ @, - t,) +r
T j=1  29j J 3
af (x,T) af (x,T) af (x,T)
- f(x,T) = ==7(0, - t.) + =~ (8, -t ,)+...+° == (B -t )+r .
4 == 3, 11 30, z 2 %, P P

In terms of the linear approximation, the system of observation equations is

y, - £(x,,1) = L&D g ¢y EHD g ¢y 4 EELD gy 4 e
1 {*= 175 = =5 —=c— P P i
30 30 30

1 2 P
for i = 1,2,...,n. Note that y,, x,,T, f(x,,T), and af(ﬁi'l) are all
TR LR SEXS —
aej

known values or values that can be computed directly. The only unknowns are

the 8, in (8, - t,). Letti
i ( [ j) ng
W,, = Af(li’l) , 2, =y -f(x,,T), §, =8, - t,, and the matrices
iy ——=5— i i = i j j
an




h 1 N h
Z -f ’ g -
! ARSIy ! SIS
7‘2 ‘l")—f(xz'l) "\ gz-(:
= = = »
7 - ' -
n Ya f (xn’ r p Qp lp
!
L 1L ) | ] L
1 1
r tl fll
Lz I'Z
, and r = : ,
[p I'n
" J L

then the system of observation equations may be written

Z= W (+rx

Applying linear least squares theory, the solution for ° that minimizes

, L og(x,,T
RsS . =1 fy-f(x,T -0 0D (e e
. i ~i7 o =1 . ] ]

is given by

s= wTwh owr

and the new estimate of 9 is

8 may be thought of as being a correction vector, so that when added to
the old estimate of the parameter values, a newer, ''better' estimate is
obtained. The method now calls for substituting the new estimate of the
parameter values in for T, and repeating the procedure. The following

flowchart ovutlines the algorithm.




Set 8 equal to the
starting vilues ot the
pdarameters

calculate W, 27

s = T

08+

failed
test for

convergenc e

succeeded




Obviously some test must be made to determine when to halt the
procedure, as indicated in the flowchart by the test tor convergence.
Any one of scveral tests mav be used.  Intultively one would halt the
procedure when the estimates of the parameter values approach a limiting
value; i.e., when the ditterence between two consecutive estimiates is

smill. It A is any matrix, let 'A} denote the largest absolute value of
the elements of A, Then one possible test for convergence is the relation

X

. ¢

. 1

I
where 9 is some prescribed constant value and the division is an
clement-wise Jdivision between the matrices © and 1. This relation tests

whether the largest proportional change in the estimiates §is less than <
It is most appropriate when the relautive magnitudes ot [l{w parameters
are unknown.  Typical values tor ¢y oare in the range 1077 to 10-6,

Another test tor convergence might be performed by comparing the
sum of the squared residuals tor two consecutive estimites ot the
parameters.  The sum ot the squared residuals ot the nonlinear model,
Riven by

Rus(H) = vy, - f(xi,ﬁ)
. 1

is a function ot 8 and is a measure ol the goodness ot it ot the model.
Recall that in the algorithm the matrices 8 and 1T represent twe consecutive
estimites ot the parameter valucs. Hence, convergence mav be tested by
the relation,

RSSO - KuS (1)

Kas (1)

where « ) 15 some constant . This is appealing in the sense that it directly
tests tor a diilerence in the tit between the two mode's. It is con-
ceivable that o wide range ot values tor the parameters might give approx-
imitely the same fit, in which vase this test would assume convergence

be fore the other. However, 1t the only purpose in estimating the parameter
values is to obtain a good fit, then the test is appropridate.

Lastly, the importuance of good starting values should be stressed.
Convergence inthe linearization method [s not guaranteed; its success,
taflure and speed may well depend on how good the starting values are




(among other things). (To allow for the possibility that convergence
fails, a bound on the number of iterations allowed should be included in
the algorithm.) As mentioned earlier, the researcher is left up to
his/her own ingenuity in finding starting values, making use of whatever
information is available. One suggestion is to plot a grid of the RSS
computed at various parameter values to get an idea of where minimums
might occur. For difficult problems, more complicated variations of the
linearization method may be employed. Also, the NLIN procedure of the
Statistical Analysis System (SAS) is a software package that performs

an extensive analysis of the nonlinear regression problem.




6. AN EXAMPLE FROM CLTMATOLOGY

Climatological data is collected on a daily basis at several
locations around the world. The data includes observations ol various
surface weather conditions such as rainfall, skycover, ceiling, and
visibility. The visibility observations recorded over the years are
grouped so that for a given location, month, and hour period there are
15 data points of the form (x,y), where x is Jdistance in statute miles
and y Is the proportion of the time in the past that visibility has been
less than or equal to x. The following data comes from Goose, Sewlound-
land in February during the hours of 0900 to 1100:

1)
x 1y
.25 ' .003
L3125 015
.S 017
.625 L0213
75 L025
1.00 038
1.25 &+ .065
1.5 : 073
2.00  © .095
2.5 126
3 134
4 159
5 . 188
- 6 209
10 i . 261

Problem: For a given location, montt, and hour period, build a probabiltity

model relating distance (x) to the proportion of the time that visibility
has been less than or equal to x (y).

The Weibull cumulative frequency distribution function has been used
to model the visibility data for several ot these locations. In the
model

6

- i
y= f(x,8) +r = l-e 9lx “+r,

the vector x ot independent variables consists only of x, and &, the
vector of parawmcters, s (0.,8,). The mode! is obviously nonlincar in
its parameters, so the lineariZation method 1s used to compute the
parameter values.

The first problem is that of finding starting values tor the
parameters. These may be obtained by taking two ohservations from the




data set, substituting them into the formula

and solving for 8. and 02, which is equivalent to fitting the curve

1
through the two data points exactly. If (xi,yi) and (xj,yj) are the
two observations chosen, then we have the system
8,
Yy = 1 - e lei
y, = 1 - e—01x192
Yy .
which, after some manipulation, yields
1 -
. n(!l yi)
oy i)

O2 X, 1 ]
In . x 2
xj i

Using (1.00, 0.038) and (5.00, 0.188) from the data shown earlier, the
starting values are

61 = .0387408 and 62 = 1.045

The next problem is to "linearize' the model. Recall that if

T = (t | S Lp) is the current best estimate of 8 = (91,92,...,9p),

l.
then the nonlinear model is approximated by

f(x,T) (%, T) At (x,T)
;- Ti= --—o- - + - —_— - + ot — - +
y tix,T) a (ul tl) 20 (92 t2) 0 (Op tp) r
» ! 2 P
f 0
_ —QIX : . .
t(x,8) = 1 - ¢ , and the partial derivatives are
o f ) . f to
fxh _oout, —tlxl‘ f_{x'T) , t, -ty x ¢
-- - = X ¢ e and -~ = £ » fn(x) * x c e
~91 092 1

w0 the linear approximation is

t. L
t,x ° t, -t %

. t
y - e BT kY e l(ol—cl)+1zl-an<x)-x‘f-e"1x

I(Qz—tz) +r .




From this the matrices Z and W may be ifdentified:

t i t t
-t,x, 2 t -t.x, 2 t ~-t.%x. 2
-1 - . Lo . . 7 . e
Y [ e 171 “) % 2« e 171 £, Qn(xl) X 2 e 1™1
t t t
t.x, 2 t -t X, 2 t -t X, 2
1 - 2 . . . e
Yy (1 e 172 7] X, 2 e 172 t; Qn(xz) X, 2 e 172
Z: . E:
t t
_r t, Xy 2 t, . _ t Loty L mtixg 2
Y, (1 -e "1 JJ X 2 o E1%n 2 t) Zn(xn) x 2 e 1
h -

Now that starting values have been found and we know how to compute Z and
W, we merely follow the algorithm expressed in the flowchart. The visibility
data from Goose, Mewfoundland converged after 7 iteratioas. Convergence was
assumed when the proportional change in the RSS for two consecutive estimztes
was less than 1 x 10-8 Below are the intermediate and final estima-:s,
computed by a program written in PROC MATRIX of the Statistical Analysis System.
Double precision arithmetic was used.

°] °]

]

Iteration 1 2 RSS
0 (Starting values) .0387408 1.045 .010229

1 . 0560605 . 734919 .00336773
2 .0546557 .787792 .00261866
3 .0553048 .77971 .00261 354
4 .055203 .780875 .00261344
5 .055218 . 780708 . 00261344
6 .0552159 . 780732 .00261344
7 .0552162 .780729 .00261344
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